线性代数课程- 上海交通大学

  • 名称:线性代数课程- 上海交通大
  • 分类:大学理工  
  • 观看人数:加载中
  • 时间:2018/1/24 13:46:33
收藏: 更多
 《线性代数》是工科专业的重要基础课。它不仅与后续课程有密切关系,而且对于培养学生的逻辑思维能力、创新能力,提高学生分析问题、解决问题的问题都有着非常重要的作用。 
由于线性问题广泛存在于科学技术的各个领域,尤其是在计算机日益普及的今天,解大型线性方程组、求矩阵的特征值与特征向量等已成为科学技术人员经常遇到的课题,因此学习和掌握线性代数的理论和方法是掌握现代科学技术以及从事科学研究的重要基础和手段,同时也是实现软件类专业培养目标的必备前提。本课程的主要任务是学习科学技术中常用的矩阵方法、线性方程组及其有关的基本计算方法。使学生具有熟练的矩阵运算能力及用矩阵方法解决一些实际问题的能力。从而为学生进一步学习后续课程和进一步提高打下必要的数学基础。 
一、本课程的性质、目的和任务 1、本课程的性质 
线性代数是讨论代数中线性关系经典理论的课程。它是高等学校工科本科各专业的一门重要的基础理论课。 2、本课程的目的 
由于线性问题广泛存在于科学技术的各个领域,而某些非线性问题广泛存在于科学技术的各个领域,而某些非线性问题在一定条件下,可以转化为线性问题,因此本课程所介绍的方法广泛地应用于各个学科。尤其在计算机日益普及的今天,该课程的地位与作用更显得重要。通过教学,使学生掌握该课程的基本理论与方法,培养解决实际问题的能力,并为学习相关课程及进一步扩大数学知识面奠定必要的数学基础。 3、本课程的任务 
(1)了解行列式的定义和性质。掌握二、三阶行列式的计算法。熟悉简单的n阶行列式的计算方法。 (2)熟悉矩阵、逆矩阵、矩阵秩的概念,掌握矩阵加减法,乘法转置运算规律,并掌握逆矩阵和矩阵秩的求法。了解对称矩阵、对角矩阵、满秩矩阵、分块矩阵。 
(3)熟悉n维向量、线性相关、线性无关的概念。了解向量组线性相关、线性无关的重要结论,最大线性无关组,向量组的秩的概念、简介向量空间以及子空间与维数*。 
(4)熟悉线性方程组的解结构与存在解的充要条件,掌握克拉默法则及用初等行交换求解线性方程组的方法。 
(5)熟悉矩阵的特征值与特征向量的概念,会求特征值与特征向量,了解相似矩阵,矩阵的对角化,正交矩阵、正交规范化的施密特(Smidt)方法。 
(6) 了解二次型及其矩阵的表示,正交变换法化二次型为标准型,二次型的正定性。