中山大学-基因工程原理课程

  • 名称:中山大学-基因工程原理课程
  • 分类:生物医药  
  • 观看人数:加载中
  • 时间:2017/8/26 12:14:04

          内容提要
1. 基因工程又称基因操作、重组DNA技术, 是P. Berg等于1972年创建的。基因工程技术涉及的基本过程包括
“切、连、转、选”。该技术有两个基本的特点∶分子水平上的操作和细胞水平上的表达。 
2. 基因工程中使用多种工具酶,包括限制性内切核酸酶、DNA连接酶和其他一些参与DNA合成与修饰的酶类。  3. 限制性内切核酸酶是基因工程中最重要的工具酶,属于水解酶类。根据限制性内切核酸酶的作用特点,被分为
三大类。Ⅱ类限制性内切核酸酶是基因工程中最常用的酶,该类酶的分子量小,专一性强,切割的方式有平切和交错切, 作用时需要Mg++作辅助因子, 但不需要ATP和SAM。第一个被分离的Ⅱ类酶是Hind Ⅱ。 
4. 连接酶是一类用于核酸分子连接形成磷酸二酯键的核酸酶,有DNA连接酶和RNA连接酶之分。基因工程中
使用的连接酶来自于原核生物,有两种类型的DNA连接酶∶E.coliDNA连接酶和T4-DNA连接酶。基因工程中使用的主要是T4DNA连接酶,它是从T4噬菌体感染的E.coli中分离的一种单链多肽酶,既能进行粘性末端连接又能进行平末端连接。 
5. 载体是能将分离或合成的基因导入细胞的DNA分子,有三种主要类型∶质粒DNA、病毒DNA、科斯质粒,
在这三种类型的基础上,根据不同的目的,出现了各种类型的改造载体。 
6. DNA重组连接的方法大致分为四种: 粘性末端连接、平末端连接、同聚物接尾连接、接头连接法。粘性末端
连接法是最常用的DNA连接方法,是指具有相同粘性末端的两个双链DNA分子在DNA连接酶的作用下, 连接成为一个杂合双链DNA。平末端连接是指在T4 DNA连接酶的作用下, 将两个具有平末端的双链DNA分子连接成杂种DNA分子。同聚物加尾连接就是利用末端转移酶在载体及外源双链DNA的3"端各加上一段寡聚核苷酸, 制成人工粘性末端, 外源DNA和载体DNA分子要分别加上不同的寡聚核苷酸,如dA(dG)和dT(dC), 然后在DNA连接酶的作用下, 连接成为重组的DNA。这种方法可适用于任何来源的DNA片段, 但方法较繁, 需要λ核酸外切酶、S1核酶、末端转移酶等协同作用。将人工合成的或来源于现有质粒的一小段DNA分子(在这一小段DNA分子上有某种限制性内切酶的识别序列), 加到载体或外源DNA的分子上, 然后通过酶切制造黏性末端的方法称为接头连接法。 
7. 基因文库分为基因组文库、cDNA文库等,是指在一种载体群体中, 随机地收集着某一生物DNA的各种克隆
片段, 理想地包含着该物种的全部遗传信息。 
8. DNA重组分子在体外构建完成后,必须导入特定的受体细胞,使之无性繁殖并高效表达外源基因或直接改变
其遗传性状,这个导入过程及操作统称为重组DNA分子的转化。目前常用的诱导感受态转化的方法是CaCl2 法(图3-20),此外也可以用基因枪等方法转化外源DNA。  9. 重组体筛选有遗传学方法、核酸杂交筛选法等。 
10. 基因工程技术是现代生物技术的核心,目前在工业、农业和医疗中已经显示了巨大的应用前景,并形成了一大
批生物技术产业。
  
基因工程是以分子遗传学为理论基础,以分子生物学和微生物学的现代方法为手段,将不同来源的基因(DNA分子),按预先设计的蓝图,在体外构建杂种DNA分子,然后导入活细胞,以改变生物原有的遗传特性,获得新品种,生产新产品;或是研究基因的结构和功能,揭示生命活动规律。 基因工程技术诞生于20世纪70年代初,它是一门崭新的生物技术科学,它的创立和发展使生命科学产生了一次重大飞跃,证明并实现了基因的可操作性,使人类从简单地利用天然生物资源走向定向改造和创造具有新品质的生物资源的时代。 基因工程技术诞生至今已经取得了辉煌的成就,成为当今生命科学研究领域中最有生命力和最引人注目的前沿学科之一,基因工程也是当今新的产业革命的一个重要组成部分。