- 1.0 机器人学简介 Industrial robots
- 1.1 课本补充:机器人学简介 Industrial robots
- 2.0 坐标系的空间(移动与旋转)描述 Spatial Description and Transformation
- 2.1 定量描述坐标系之间的平移和旋转关系 映射 Spatial Description and Transformation
- 2.2 齐次变换矩阵 同时描述两个坐标系之间的平移和旋转关系 homogeneous transformation matrix
- 2.3 绕固定坐标系旋转和平移多次的其次变换矩阵(左乘)Transformation about a fixed coordinate
- 2.4 绕运动坐标系旋转和平移多次的其次变换矩阵(右乘)Transformation about the coordinate
- 2.5 总结:坐标系的空间(移动与旋转)描述 Spatial Description and Transformation
- 2.6 课本补充:坐标系的空间(移动与旋转)描述 Spatial Description and Transformation
- 2.7 课本补充:坐标系的空间-齐次坐标系的逆 Spatial Description and Transformation
- 3.0 运动学介绍 kinematic introduction
- 3.1 课本补充:运动学介绍kinematic introduction
- 4.0 DH参数表基础知识 DH notation
- 4.01 DH参数法如何确定α的大小和正负
- 4.02 DH参数法如何确定θ的大小和正负
- 4.1 UR机械臂的DH参数表、机构简图 DH parameter table and mechanism diagram of UR
- 5.0 正运动学 Forward kinematics
- 6.0 逆运动学 Inverse kinematics
- 7.0 雅克比矩阵前传-运动学复习-理论力学部分 Jacobian matrices - Kinematics review
- 7.1.1 雅克比矩阵 -jacobian-哈工大(深圳)课件讲解
- 7.1.2 雅克比矩阵 -jacobian-台大林沛群教授的课件讲解
- 7.2 复习牵连运动、科氏加速度-理论力学内容 Review implicated motion Coriolis acceleration
- 7.3 牛顿 欧拉法 前传-连杆 速度加速度计算基础 Newtonian Euler method
- 7.4 课本补充:机器人动力学
- 7.5 课本补充:雅克比矩阵
- 8.0 机械臂设计与传感器-Robotic Design and Sensors
- 9.0 路径规划 Trajectory Planning
- 10.0 牛顿欧拉法(从末端到连杆依次求力和力矩、然后求线动量和角动量 Newtonian Euler method
- 11.0 拉格朗日法(根据(动能和势能)能量求力)lagrangian method
- 12.0 机械臂力矩计算扭矩的PID控制 PID control for calculating torque of manipulator
- 12.1 课本补充:机器人的控制
- 13.0 平时作业、大作业讲解
- 14.0 2022年 期末真题回忆 -仅针对哈工大深圳 杨晓钧教授的课程
以下是一份机器人学和机器人技术期末复习指南:
一、知识体系梳理
机器人基础概念
定义与分类:
明确机器人的定义,即一种能够自动执行任务的可编程机器装置。机器人可以根据不同的标准进行分类,如按用途可分为工业机器人、服务机器人、特种机器人;按控制方式分为点位控制机器人、连续轨迹控制机器人;按机械结构分为串联机器人、并联机器人等。例如,工业机器人常用于汽车制造中的焊接、喷漆等工序,属于点位控制和串联机器人的范畴。
组成部分:
机器人一般由机械本体、驱动系统、控制系统、感知系统和末端执行器等组成。机械本体是机器人的物理架构,提供支撑和运动的基础。驱动系统为机器人的关节或移动部件提供动力,如电机、液压或气压装置。控制系统是机器人的 “大脑”,它接收指令并协调各部分的动作,像基于微处理器的控制器可以实现复杂的运动规划。感知系统包括各种传感器,如视觉传感器用于识别物体的形状、位置,触觉传感器用于感知接触力等。末端执行器是机器人直接与外界交互的部件,例如用于抓取物体的机械手爪。
运动学与动力学
运动学基础:
正运动学是研究从机器人关节变量到末端执行器位置和姿态的映射关系。以简单的 2 - 自由度平面机械臂为例,通过三角函数可以建立关节角度与末端位置的关系。例如,对于一个由两个长度为和的连杆组成的平面机械臂,设关节角度分别为和,则末端在笛卡尔坐标系中的位置可以通过公式和来计算。
逆运动学则是相反的过程,即已知末端执行器的位置和姿态,求解关节变量。这通常是一个复杂的非线性问题,可能有多个解或无解。例如,对于上述的 2 - 自由度机械臂,给定末端位置,需要通过复杂的数学推导和数值方法来求解和。
动力学基础:
机器人动力学研究机器人的运动与作用在其上的力和力矩之间的关系。牛顿 - 欧拉方程是常用的动力学建模方法,它考虑了机器人连杆的质量、惯性、关节处的摩擦力等因素。例如,对于一个旋转关节机器人,根据牛顿 - 欧拉方程可以推导出关节力矩与关节加速度、速度以及末端负载等因素之间的关系,这个关系对于机器人的精确控制和轨迹规划非常重要。
机器人感知与传感器技术
传感器类型:
视觉传感器是机器人感知环境的重要手段。包括 CCD(电荷耦合器件)和 CMOS(互补金属 - 氧化物 - 半导体)摄像头,它们可以获取环境的图像信息。例如,在工业检测中,视觉传感器可以识别产品表面的缺陷。
距离传感器如超声波传感器、激光雷达等可以测量机器人与周围物体之间的距离。超声波传感器通过发射和接收超声波脉冲来计算距离,激光雷达则利用激光束的反射时间来确定距离,它们在机器人的避障和导航中发挥关键作用。
触觉传感器可以感知机器人与物体接触时的力、压力和纹理等信息。例如,在机器人抓取物体时,触觉传感器可以判断抓取力是否合适,避免物体滑落或损坏。
传感器数据处理:
传感器获取的数据通常需要进行预处理,如滤波去除噪声。例如,视觉传感器获取的图像可能会受到光照、电磁干扰等因素产生噪声,通过中值滤波、高斯滤波等方法可以提高图像质量。然后,对数据进行特征提取,如在视觉处理中提取物体的边缘、轮廓、颜色等特征,用于物体识别和定位。
机器人控制技术
控制策略:
位置控制是机器人控制的基本方式,它通过控制机器人关节的位置来实现期望的运动轨迹。PID(比例 - 积分 - 微分)控制器是常用的位置控制方法,其中比例项用于根据当前位置误差调整控制量,积分项用于消除稳态误差,微分项用于预测误差的变化趋势。例如,在机器人手臂的位置控制中,PID 控制器可以根据期望位置和实际位置的误差,输出合适的电机驱动信号,使手臂准确地到达目标位置。
力控制用于需要机器人与环境进行物理交互的情况,如装配、打磨等任务。它通过控制机器人末端执行器与环境之间的接触力来保证操作的质量。例如,在精密装配中,力控制可以确保零件之间的正确配合,避免过大的力损坏零件。
轨迹规划:
轨迹规划是指在机器人工作空间中规划出一条从起始点到目标点的无碰撞路径。在关节空间中进行轨迹规划,可以先确定起始和目标关节位置,然后通过插值方法(如多项式插值、样条插值)生成关节角度随时间变化的函数。在笛卡尔空间中,轨迹规划需要考虑机器人末端执行器的位置、姿态以及运动速度等因素,以保证运动的平滑性和准确性。
二、复习方法
回顾课堂笔记和教材
系统地梳理课堂笔记,重点关注老师强调的概念、公式和案例。对照教材中的相关章节,加深对知识点的理解。例如,如果课堂上老师详细讲解了机器人逆运动学的数值解法,要仔细阅读教材中关于该解法的原理、步骤以及应用场景的内容。
做练习题和案例分析
完成课后练习题,特别是涉及运动学计算、控制参数调整、传感器数据处理等方面的题目。通过案例分析,理解机器人在实际应用中的问题解决方法。例如,分析一个工业机器人焊接生产线的案例,了解机器人运动轨迹规划、焊接参数控制以及视觉检测系统的协同工作原理。
制作思维导图或总结笔记
将各个知识点整理成思维导图,以机器人的组成部分或工作流程为线索,把运动学、动力学、感知、控制等内容串联起来。或者制作总结笔记,用简洁的语言和图表概括重点知识。例如,在思维导图中,以 “机器人控制” 为中心节点,引出位置控制、力控制、轨迹规划等子节点,并在子节点下详细列出相关的方法和公式。
三、重点关注的应用领域案例(有助于理解知识)
工业机器人
在汽车制造中,机器人用于车身焊接、喷漆、零部件装配等任务。以焊接机器人为例,它需要精确的运动学控制来保证焊接路径的准确性,同时通过视觉传感器实时监测焊接质量,如焊缝的形状、宽度等。其动力学特性则影响焊接速度和焊接力的控制,以确保焊接的强度和外观质量。
服务机器人
如餐厅服务机器人,它需要利用感知系统(包括激光雷达、视觉传感器等)进行环境地图构建和定位,通过轨迹规划在餐厅环境中安全地移动,将菜品准确地送到顾客餐桌。并且,它的机械臂控制(包括位置控制和力控制)用于准确地抓取和放置餐盘等物品。
