课程目录

19世纪末由于牛顿力学和(苏格兰数学家)麦克斯韦(1831~1879年)电磁理论趋于完善,一些物理学家认为“物理学的发展实际上已经结束”,但当人们运用伽利略变换解释光的传播等问题时,发现一系列尖锐矛盾,对经典时空观产生疑问。爱因斯坦对这些问题,提出物理学中新的时空观,建立了可与光速相比拟的高速运动物体的规律,创立相对论。 狭义相对论提出两条基本原理。(1)光速不变原理:即在任何惯性系中,真空中光速c都相同,为299,792,458m/s,与光源及观察者的运动状况无关。(2)狭义相对性原理:是指物理学的基本定律乃至自然规律,对所有惯性参考系来说都相同。
爱因斯坦的第二种相对性理论(1916年)。该理论认为引力是由空间——时间弯曲的几何效应(也就是,不仅考虑空间中的点之间,而是考虑在空间和时间中的点之间距离的几何)的畸变引起的,因而引力场影响时间和距离的测量。
爱因斯坦提出“等效原理”,即引力和惯性力是等效的。这一原理建立在引力质量与惯性质量的等价性上。根据等效原理,爱因斯坦把狭义相对性原理推广为广义相对性原理,即物理定律的形式在一切参考系都是不变的。物体的运动方程即该参考系中的测地线方程。测地线方程与物体自身固有性质无关,只取决于时空局域几何性质。而引力正是时空局域几何性质的表现。物质质量的存在会造成时空的弯曲,在弯曲的时空中,物体仍然顺着最短距离进行运动(即沿着测地线运动——在欧氏空间中即是直线运动),如地球在太阳造成的弯曲时空中的测地线运动,实际是绕着太阳转,造成引力作用效应。正如在弯曲的地球表面上,如果以直线运动,实际是绕着地球表面的大圆走。

引力是时空局域几何性质的表现。虽然广义相对论是爱因斯坦创立的,但是它的数学基础的源头可以追溯到欧氏几何的公理和数个世纪以来为证明欧几里德第五公设(即平行线永远保持等距)所做的努力,这方面的努力在罗巴切夫斯基、Bolyai、高斯的工作中到达了顶点:他们指出欧氏第五公设是不能用前四条公设证明的。非欧几何的一般数学理论是由高斯的学生黎曼发展出来的。所以也称为黎曼几何或曲面几何,在爱因斯坦发展出广义相对论之前,人们都认为非欧几何是无法应用到真实世界  光波从一个大质量物体表面出射频率发生红移中来的。

邮箱
huangbenjincv@163.com